

DEPARTMENT OF MATHEMATICS

Integrated M.Sc. Mathematics Semester: I CC1 Differential and Integral Calculus (060090105) Academic Year : 2019-20

Teaching Schedule

Course Objectives:

To study fundamental concepts related to real world problems so that students get sound Knowledge and important aspects of the subject.

Course Outcomes: Upon completion of the course, students shall be able to

- **CO1**: understand the differentiation of hyperbolic functions and derive nth order derivative of function.
- **CO2:** verify the value of the limit of a function at a point using the definition of the limit.
- **CO3:** calculate the limit of a function at a point numerically and algebraically using L'hospital's rule.
- **CO4:** understand concept of parameterized curve from algebraic, geometric and physical standpoints.
- **CO5:** evaluate the reduction formula of integration and derive the length of arc, area of surface and volume of solid.
- **CO6:** formulate the region of structured and unstructured solid into the form of double and triple integrals and obtained their area, mass and volume.

Unit	Sub Unit	No. of Lectu re (s)	Topics	Reference Chapter/ Additional Reading	Teaching Methodol ogy to be used	Active Learning Activities	Evaluation Parameters		
Differential calculus :Hyperbolic functions [21]									
1	1.1 1.2		Hyperbolic functions Higher order derivatives	Ch# 7 – 416 - 421 Ch#3 – 121		For Slow Learner: Students must write answer of	Unit test		
	1.3	-	Leibnitz rule and its applications	122,152,771 Ch# 5 - 306	Chalk & Talk	question(s) given by teacher after completion of Unit.			
	1.4		concavity and inflection points, asymptotes	Ch# 4 – 203- 206,188,209		For Active Learner: Students read at least one research paper based on DIP and mapping content with Unit			
			Differential cal	culus : L'Hospi	tal's rule		[17]		
2	2.1	7	Indeterminate form, L'Hospital's rule, applications in business, economics and life sciences	Ch# 7 – 396- 402,600-601		For Slow Learner: Study methods from book/papers and discuss within	Unit test		
	2.2	10	applications in business, economics and life sciences, Curve tracing in Cartesian coordinates, tracing in polar coordinates of standard curves	Ch# 7 – 396- 402,600-601	Chalk & Talk	group. *For Active Learner: Apply different methods in selected application and show the results			

DEPARTMENT OF MATHEMATICS

Integrated M.Sc. Mathematics Semester: I CC1 Differential and Integral Calculus (060090105) Academic Year : 2019-20

I					1			
			Into	gral calculus		with analysis.	[21]	
3	3.1			[For Slow Learner: Unit test			
	5.1	3	Reduction formulae	G.B #8 : 435- 439		Provide calculation based question by		
	3.2	5	Derivations and illustrations of reduction formulae of the type ∫sinnxdx , ∫cosnxdx , ∫tannxdx , ∫secnxsx ,	G.B #8 : 440- 448	Chalk & Talk	teacher and Students solve them. *For Active Learner: Apply different methods in selected application and		
	3.3	5	Volumes by slicing, disks and washers methods	G.B #8 : 308- 318		show the results with analysis		
	3.4	4	Volumes by cylindrical shells, parametric equations, parameterizing a curve, arc	G.B #8 : 319- 337				
	3.5	4	Length arc, length of parametric curves, area of surface of revolution.	G.B #8 : 319- 337				
			Multiple Int	egral and its a	pplication	l	[16]	
4	4.1	2	Reorientation of concepts of integrals	G.B #8	Chalk & Talk	For Slow Learner: Provide calculation based question by	U	
	4.2	3	Double and triple integrals	G.B #8		teacher and Students solve them. *For Active Learner: Apply different methods in selected		
	4.3	2	Evaluation techniques	G.B #8				
	4.4	3	Change of order of Integration	K.S #6				
	4.5	1	Change of variable	K.S #6	Chalk & Talk	show the results		
	4.6	5	Application of double and triple integrals for evaluation of area, volume and mass	K.S #6		with analysis		

Text books:

1. G.B. Thomas and R.L. Finney – "Calculus", 9th Edition, Pearson Education, Delhi, 2005 2. M.J.Strauss, G.L. Bradley and K. J. Smith – "Calculus", 3rd Edition, Dorling Kindersley (India) P. Ltd. (Pearson Education), Delhi, 2007.

Reference books:

- 1. H. Anton, I. Bivens and S. Davis "Calculus", 7th Edition, John Wiley and Sons (Asia) P. Ltd., Singapore, 2002.
- 2. R. Courant and F. John "Introduction to Calculus and Analysis (Volumes I & II)", Springer-Verlag, New York, Inc., 1989.
- 3. Rudra Pratap "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press, 2002.

Integrated M.Sc. Mathematics Semester: I CC1 Differential and Integral Calculus (060090105) Academic Year : 2019-20

Course Objectives and Course Outcomes Mapping:

- To study Differential Calculus and get knowledge about how to plot the graph CO1, CO2, CO3, CO4.
- To study Difference between double and triple integration and how to change the order of the Integration also application of multiple integral CO5, CO6
- •

Course Units and Course Outcomes Mapping:

Unit No.	Unit	Course Outcomes					
		C01	CO2	CO3	CO4	CO5	CO6
1	Differential calculus :	~					
	Hyperbolic functions						
2	Differential calculus : L'Hospital's rule		~	~			
3	Integral Calculus				✓		
4	Multiple Integral and its application					✓	~

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes Mapping:

Programme Outcomes	Course Outcomes					
	CO1	CO2	CO3	CO4	CO5	C06
P01	\checkmark					\checkmark
PO2		\checkmark			\checkmark	
P03			√		√	
PO4	\checkmark			\checkmark		\checkmark